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Problem statement 
 
Transportation infrastructure is quickly moving towards revolutionary changes to 
accommodate the deployment of AVs. On the other hand, the transition to new 
vehicle technologies will be shaped in large part by changes in performance of 
roadway infrastructure. This research aims at understanding the relationship 
between AV technology and infrastructure performance, which leads to 
revolutionary change in transportation infrastructure design in the both short and 
long term.  
 
For nearly a century, traffic flow in the roadway networks is operated purely by 
human beings. Human’s reactions to preceding vehicles and side vehicles almost 
dominate the driving behavior, which is to be replaced by vehicle 
automation/communication in the future. The technology for autonomous and 
connected vehicles is rapidly approaching the point of commercial 
implementation. AVs are cars that can be fully controlled by computers, instead of 
people, relying upon on-board advanced sensors and computers to observe and 
interpret road conditions and determine a safe course of action. Connected 
vehicles, on the other hand, receive data from other vehicles, or a central system, 
that then instructs them how to operate safely. Generally there is a significant 
developmental overlap between the two, with future autonomous connected 
vehicles able to receive data from itself, other cars and systems, and capable of 
driving themselves or accepting control from external systems. With an assigned 
time and path, these lightweight, self-guided cars would proceed steadily through 
crowded infrastructure without all the stop-and-go that chokes roadways and saps 
fuel efficiency. Many of the enabling technologies, such as adaptive cruise control 
and lane departure warning systems, already exist. We envision that the pathways 
of AV and connected vehicle development are likely to converge in the long run. 
This research uses ‘autonomous vehicle (AV)’ to represent ‘autonomous connected 
vehicle’. 
 
To assess the vehicular technology impact to the traffic flow, two of the most 
important questions we attempt to tackle in this research are,  

1) How would vehicle automation/communication, with different 
sensing and control specifications, change the vehicle speed and headway 
under various traffic conditions, and therefore change traffic congestion and 
crash patterns in the network?  
2) How would the vehicular technology change the flow capacity of the 
roadway infrastructure network, under different crash rates that are expected 
to be achieved by different vehicular control strategies?  How does the 
change vary at different levels of AV penetration rates?  

 
This project primarily addresses the mobility concerns of AVs, while establishing a 
modeling framework that allows future extensions to assess both mobility and 



safety. In particular, this research proposes a multi-class traffic flow model that 
captures the car-following behavior of both regular vehicles and AVs. The research 
helps determine the impact of vehicle automation on the effective road capacity 
and operating efficiency of transportation networks. It also provides insights for 
design of the vehicle control strategies targeting mobility and safety. With the traffic 
flow model mixing both AV and regular vehicles, future tesearch will be devoted to 
address knowledge gaps related to the operations of automated vehicles and the 
existing road infrastructure, and the policy implications for transportation planning, 
system design, and the economy. 
 
Approach 
 
One key idea of modeling heterogeneous flow is that, rather than an aggregated 
flow-density relation of mixed flow as treated in the well-known LWR model, we 
approximate the mixed flow by considering the interactions of several classes of 
traffic streams. Each class possesses identical vehicle attributes and car-following 
rules, which are encapsulated by a unique well-defined (least requirements usually 
include continuity and concavity) fundamental diagram. In this paper, still within 
this general framework, we develop a generic, yet simple, class-specific capacity 
allocation and flux scheme to capture inter-class flow interactions. This method has 
several distinct features, 
 
Data-driven framework. We propose several flow propagation and interaction rules 
that are consistent with the flow physics and can be easily calibrated using real-
world data. Unlike the LWR model whose only empirical input is the aggregated 
fundamental diagram, class-specific fundamental diagrams and interaction rules of 
the proposed multi-class model can be simultaneously tuned to best reflect 
empirical truth, analogous to classical data mining models. The data-driven 
approach can ensure the model fit the reality in an optimal fashion and produce 
reliable estimation and prediction. Though in reality, virtually every single car 
possesses different behavior and their respective attributes are unknown, it is 
possible to approximate the actual flow attributes by several representative classes 
and tuning them properly with data. 
 
Realistic class-specific travel time computation. Traversal times of a roadway 
segment can vary significantly among flow classes. An important advantage of this 
multi-class model is to estimate or predict the travel time for each class in the 
dynamic transportation network, a necessity for multi-class Dynamic Traffic 
Assignment. A general phenomena is that under severe congestion, the travel speed 
of all classes tends to converge, while each class can follow its respective free-flow 
speed in very light traffic. The travel time plays an important role in travelers' route 
choice, departure time choice and modal choice in the network, and therefore 
should be distinguished among classes. 
 



Model flexibility. Traffic flow can be distinguished by many factors, such as vehicle 
size (e.g., trucks versus standard passenger cars), drivers' reaction time (aggressive 
drivers versus conservative drivers), vehicle maximum speeds (luxury cars versus 
regular cars), and vehicle automation (automated vehicles versus human-driving 
vehicles). Each of those factors, if significant in flow, can be captured in the 
fundamental diagram of a representative class. For instance, aggressive drivers' 
class leads to higher free-flow speed and slower shockwave speed. Truck's class 
leads to lower free-flow speed and much lower jam density. If sufficient field data 
are available, approximating the flow attributes using sufficient amount of 
representative classes is always possible. 
 
Computational efficiency for large-scale networks. Multi-class flow models often 
require intensive computations, which hinders its application to large-scale 
dynamic network models. A simple and pragmatic flow propagation model enables 
efficient modeling of heterogeneous travelers in large-scale networks. 
 
Methodology  
 
This research approximates traffic flow by two vehicle classes each of which is 
assumed to possess homogeneous car-following behavior and vehicle size. An 
intuitive computational procedure is proposed to capture mixed vehicular flow 
propagation and shock formation phenomena. The car-following behavior and 
vehicle size are assumed to be homogeneous for both regular vehicles and AVs, 
represented by a deterministic fundamental diagram. Both classes of vehicles 
experience identical traffic state, but each class perceived the effect of other classes 
differently. We propose the concept of perceived equivalent density for each class. 
Perceived density for class m is the equivalent density of vehicles in class m that a 
class m would perceive by converting other classes into class $m$. Both lateral and 
longitudinal cross-class interactions are modeled. The lateral cross-class 
intersections are captured through alpha, namely the fraction of lateral road space 
utilized by class $m$ traffic. Oftentimes, microscopic data are unavailable or not 
sufficient to identify such fractions precisely. Therefore, a pragmatic scheme is 
proposed in such a way that the lateral road capacity is utilized most efficiently and 
the space allocation is consistent with the flow phenomena. 
 
The research methodology has been reported in a paper titled, Modeling 
Heterogeneous Traffic Flow: A Pragmatic Approach, and under review for 
publication in Transportation Research Part B. 
 
Findings and Conclusions 
 
Our multi-class flow model is shown to be consistent with the single class CTM 
model and has the ability to capture shockwave of multiple classes. The multi-class 
models has been extensively tested in numerical experiments and the NGSIM I-80 



data set (obtained through). They can produce realistic congestion propagation for 
two classes in various scenarios including flow perturbation and incident-induced 
bottleneck. The new model also computes realistic time-varying travel time for 
each class, which cannot be obtained from the conventional single class model. 
 
The new multi-class flow model inherently enables a data-driven approach to 
further calibrate and verify the underlying behavior models. If refined traffic data 
are available (e.g., vehicle trajectory data similar to the NGSIM or time-varying 
density/counts), then road space allocations and fundamental diagrams of each 
representative vehicle class can be determined such that all those tuning 
parameters together produce estimation of spatiotemporal flow closest to the real 
observation. This is analogous to Rank-M approximation of data in the data mining 
literature. 
 
Our future work will first collect traffic data in more sites and further validate the 
multi-class model. We will generalize our classification. Traffic flow can be 
categorized by vehicle size (e.g., trucks versus standard passenger cars), drivers' 
reaction time (aggressive drivers versus conservative drivers), vehicle maximum 
speeds (luxury cars versus regular cars), and vehicle automation (automated 
vehicles versus human-driving vehicles). Different vehicle classification methods 
can be examined to better approximate the real traffic flow. In addition to modeling 
flow in a stretch of highway, we will also extend our model to merge and diverge 
junctions. A pragmatic model will be proposed to model merge and diverge for 
multiple classes, which requires field test and data validation. Another goal is to 
apply the multi-class model to general network models so that route, mode and 
departure time choices of heterogeneous users in the network can be properly 
modeled. 
	  
 


